3.20.75 \(\int \frac {(1-2 x)^{5/2}}{(2+3 x)^3 (3+5 x)} \, dx\) [1975]

3.20.75.1 Optimal result
3.20.75.2 Mathematica [A] (verified)
3.20.75.3 Rubi [A] (verified)
3.20.75.4 Maple [A] (verified)
3.20.75.5 Fricas [A] (verification not implemented)
3.20.75.6 Sympy [B] (verification not implemented)
3.20.75.7 Maxima [A] (verification not implemented)
3.20.75.8 Giac [A] (verification not implemented)
3.20.75.9 Mupad [B] (verification not implemented)

3.20.75.1 Optimal result

Integrand size = 24, antiderivative size = 95 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {7 (1-2 x)^{3/2}}{6 (2+3 x)^2}+\frac {49 \sqrt {1-2 x}}{2 (2+3 x)}+235 \sqrt {\frac {7}{3}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-242 \sqrt {\frac {11}{5}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

output
7/6*(1-2*x)^(3/2)/(2+3*x)^2-242/5*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^ 
(1/2)+235/3*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)+49/2*(1-2*x)^(1/2 
)/(2+3*x)
 
3.20.75.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.84 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {7 \sqrt {1-2 x} (43+61 x)}{6 (2+3 x)^2}+235 \sqrt {\frac {7}{3}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-242 \sqrt {\frac {11}{5}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

input
Integrate[(1 - 2*x)^(5/2)/((2 + 3*x)^3*(3 + 5*x)),x]
 
output
(7*Sqrt[1 - 2*x]*(43 + 61*x))/(6*(2 + 3*x)^2) + 235*Sqrt[7/3]*ArcTanh[Sqrt 
[3/7]*Sqrt[1 - 2*x]] - 242*Sqrt[11/5]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]
 
3.20.75.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {109, 27, 166, 27, 174, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{5/2}}{(3 x+2)^3 (5 x+3)} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {1}{6} \int \frac {3 (43-9 x) \sqrt {1-2 x}}{(3 x+2)^2 (5 x+3)}dx+\frac {7 (1-2 x)^{3/2}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {(43-9 x) \sqrt {1-2 x}}{(3 x+2)^2 (5 x+3)}dx+\frac {7 (1-2 x)^{3/2}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 166

\(\displaystyle \frac {1}{2} \left (\frac {49 \sqrt {1-2 x}}{3 x+2}-\frac {1}{3} \int -\frac {3 (389-239 x)}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx\right )+\frac {7 (1-2 x)^{3/2}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\int \frac {389-239 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx+\frac {49 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 (1-2 x)^{3/2}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{2} \left (-1645 \int \frac {1}{\sqrt {1-2 x} (3 x+2)}dx+2662 \int \frac {1}{\sqrt {1-2 x} (5 x+3)}dx+\frac {49 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 (1-2 x)^{3/2}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left (-2662 \int \frac {1}{\frac {11}{2}-\frac {5}{2} (1-2 x)}d\sqrt {1-2 x}+1645 \int \frac {1}{\frac {7}{2}-\frac {3}{2} (1-2 x)}d\sqrt {1-2 x}+\frac {49 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 (1-2 x)^{3/2}}{6 (3 x+2)^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (470 \sqrt {\frac {7}{3}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-484 \sqrt {\frac {11}{5}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )+\frac {49 \sqrt {1-2 x}}{3 x+2}\right )+\frac {7 (1-2 x)^{3/2}}{6 (3 x+2)^2}\)

input
Int[(1 - 2*x)^(5/2)/((2 + 3*x)^3*(3 + 5*x)),x]
 
output
(7*(1 - 2*x)^(3/2))/(6*(2 + 3*x)^2) + ((49*Sqrt[1 - 2*x])/(2 + 3*x) + 470* 
Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] - 484*Sqrt[11/5]*ArcTanh[Sqrt[5 
/11]*Sqrt[1 - 2*x]])/2
 

3.20.75.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 166
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Simp[1/(b*(b*e - 
a*f)*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b* 
c*(f*g - e*h)*(m + 1) + (b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h 
)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; FreeQ[{a, b, c, d, 
e, f, g, h, p}, x] && ILtQ[m, -1] && GtQ[n, 0]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 
3.20.75.4 Maple [A] (verified)

Time = 3.30 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.67

method result size
risch \(-\frac {7 \left (122 x^{2}+25 x -43\right )}{6 \left (2+3 x \right )^{2} \sqrt {1-2 x}}+\frac {235 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{3}-\frac {242 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{5}\) \(64\)
derivativedivides \(-\frac {242 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{5}-\frac {126 \left (\frac {61 \left (1-2 x \right )^{\frac {3}{2}}}{54}-\frac {49 \sqrt {1-2 x}}{18}\right )}{\left (-4-6 x \right )^{2}}+\frac {235 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{3}\) \(66\)
default \(-\frac {242 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{5}-\frac {126 \left (\frac {61 \left (1-2 x \right )^{\frac {3}{2}}}{54}-\frac {49 \sqrt {1-2 x}}{18}\right )}{\left (-4-6 x \right )^{2}}+\frac {235 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{3}\) \(66\)
pseudoelliptic \(\frac {2350 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \left (2+3 x \right )^{2} \sqrt {21}-1452 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \left (2+3 x \right )^{2} \sqrt {55}+35 \sqrt {1-2 x}\, \left (61 x +43\right )}{30 \left (2+3 x \right )^{2}}\) \(75\)
trager \(\frac {7 \left (61 x +43\right ) \sqrt {1-2 x}}{6 \left (2+3 x \right )^{2}}+\frac {121 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) \ln \left (\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) x +55 \sqrt {1-2 x}-8 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right )}{3+5 x}\right )}{5}-\frac {235 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) x -5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{6}\) \(111\)

input
int((1-2*x)^(5/2)/(2+3*x)^3/(3+5*x),x,method=_RETURNVERBOSE)
 
output
-7/6*(122*x^2+25*x-43)/(2+3*x)^2/(1-2*x)^(1/2)+235/3*arctanh(1/7*21^(1/2)* 
(1-2*x)^(1/2))*21^(1/2)-242/5*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2 
)
 
3.20.75.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.28 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {726 \, \sqrt {11} \sqrt {5} {\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (\frac {\sqrt {11} \sqrt {5} \sqrt {-2 \, x + 1} + 5 \, x - 8}{5 \, x + 3}\right ) + 1175 \, \sqrt {7} \sqrt {3} {\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (-\frac {\sqrt {7} \sqrt {3} \sqrt {-2 \, x + 1} - 3 \, x + 5}{3 \, x + 2}\right ) + 35 \, {\left (61 \, x + 43\right )} \sqrt {-2 \, x + 1}}{30 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} \]

input
integrate((1-2*x)^(5/2)/(2+3*x)^3/(3+5*x),x, algorithm="fricas")
 
output
1/30*(726*sqrt(11)*sqrt(5)*(9*x^2 + 12*x + 4)*log((sqrt(11)*sqrt(5)*sqrt(- 
2*x + 1) + 5*x - 8)/(5*x + 3)) + 1175*sqrt(7)*sqrt(3)*(9*x^2 + 12*x + 4)*l 
og(-(sqrt(7)*sqrt(3)*sqrt(-2*x + 1) - 3*x + 5)/(3*x + 2)) + 35*(61*x + 43) 
*sqrt(-2*x + 1))/(9*x^2 + 12*x + 4)
 
3.20.75.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 168 vs. \(2 (83) = 166\).

Time = 37.58 (sec) , antiderivative size = 372, normalized size of antiderivative = 3.92 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^3 (3+5 x)} \, dx=- \frac {1027 \sqrt {21} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {21}}{3} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {21}}{3} \right )}\right )}{27} + \frac {121 \sqrt {55} \left (\log {\left (\sqrt {1 - 2 x} - \frac {\sqrt {55}}{5} \right )} - \log {\left (\sqrt {1 - 2 x} + \frac {\sqrt {55}}{5} \right )}\right )}{5} + \frac {5684 \left (\begin {cases} \frac {\sqrt {21} \left (- \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )}\right )}{147} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right )}{9} - \frac {2744 \left (\begin {cases} \frac {\sqrt {21} \cdot \left (\frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{16} - \frac {3 \log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{16} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} + \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )^{2}} + \frac {3}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )} - \frac {1}{16 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )^{2}}\right )}{1029} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right )}{9} \]

input
integrate((1-2*x)**(5/2)/(2+3*x)**3/(3+5*x),x)
 
output
-1027*sqrt(21)*(log(sqrt(1 - 2*x) - sqrt(21)/3) - log(sqrt(1 - 2*x) + sqrt 
(21)/3))/27 + 121*sqrt(55)*(log(sqrt(1 - 2*x) - sqrt(55)/5) - log(sqrt(1 - 
 2*x) + sqrt(55)/5))/5 + 5684*Piecewise((sqrt(21)*(-log(sqrt(21)*sqrt(1 - 
2*x)/7 - 1)/4 + log(sqrt(21)*sqrt(1 - 2*x)/7 + 1)/4 - 1/(4*(sqrt(21)*sqrt( 
1 - 2*x)/7 + 1)) - 1/(4*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)))/147, (sqrt(1 - 2* 
x) > -sqrt(21)/3) & (sqrt(1 - 2*x) < sqrt(21)/3)))/9 - 2744*Piecewise((sqr 
t(21)*(3*log(sqrt(21)*sqrt(1 - 2*x)/7 - 1)/16 - 3*log(sqrt(21)*sqrt(1 - 2* 
x)/7 + 1)/16 + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 + 1)) + 1/(16*(sqrt(21)*sqr 
t(1 - 2*x)/7 + 1)**2) + 3/(16*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)) - 1/(16*(sqr 
t(21)*sqrt(1 - 2*x)/7 - 1)**2))/1029, (sqrt(1 - 2*x) > -sqrt(21)/3) & (sqr 
t(1 - 2*x) < sqrt(21)/3)))/9
 
3.20.75.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.16 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {121}{5} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) - \frac {235}{6} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) - \frac {7 \, {\left (61 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 147 \, \sqrt {-2 \, x + 1}\right )}}{3 \, {\left (9 \, {\left (2 \, x - 1\right )}^{2} + 84 \, x + 7\right )}} \]

input
integrate((1-2*x)^(5/2)/(2+3*x)^3/(3+5*x),x, algorithm="maxima")
 
output
121/5*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x 
+ 1))) - 235/6*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*s 
qrt(-2*x + 1))) - 7/3*(61*(-2*x + 1)^(3/2) - 147*sqrt(-2*x + 1))/(9*(2*x - 
 1)^2 + 84*x + 7)
 
3.20.75.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.13 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {121}{5} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {235}{6} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {7 \, {\left (61 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 147 \, \sqrt {-2 \, x + 1}\right )}}{12 \, {\left (3 \, x + 2\right )}^{2}} \]

input
integrate((1-2*x)^(5/2)/(2+3*x)^3/(3+5*x),x, algorithm="giac")
 
output
121/5*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5* 
sqrt(-2*x + 1))) - 235/6*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 
1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 7/12*(61*(-2*x + 1)^(3/2) - 147*sqrt( 
-2*x + 1))/(3*x + 2)^2
 
3.20.75.9 Mupad [B] (verification not implemented)

Time = 1.40 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.75 \[ \int \frac {(1-2 x)^{5/2}}{(2+3 x)^3 (3+5 x)} \, dx=\frac {235\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{3}-\frac {242\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )}{5}+\frac {\frac {343\,\sqrt {1-2\,x}}{9}-\frac {427\,{\left (1-2\,x\right )}^{3/2}}{27}}{\frac {28\,x}{3}+{\left (2\,x-1\right )}^2+\frac {7}{9}} \]

input
int((1 - 2*x)^(5/2)/((3*x + 2)^3*(5*x + 3)),x)
 
output
(235*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/3 - (242*55^(1/2)*atanh 
((55^(1/2)*(1 - 2*x)^(1/2))/11))/5 + ((343*(1 - 2*x)^(1/2))/9 - (427*(1 - 
2*x)^(3/2))/27)/((28*x)/3 + (2*x - 1)^2 + 7/9)